Emissions Product Documentation and API
Guide

Summary

This document describes how to access data available in the Emissions data product available
through the CSIRO Data Shop. For details about the methodology used to generate the data
please refer to Aryai, V., Goldsworthy, M. "Controlling electricity storage to balance electricity
costs and greenhouse gas emissions in buildings", Energy Inform 5, 11 (2022).
https://doi.org/10.1186/s42162-022-00216-5.

Prerequisites

e Authorization and license agreement. You can access a subscription through our CSIRO
Data Shop. More details on Authorisation processes/mechanisms are in the section
"Authentication for CSIRO Data Shop Products APIs" below.

e Some programming experience to consume REST API data services. An example is
provided using the python programming language, but python is not required at all.

Data Structure and Variables

The Emissions data is organized as a collection of time series estimates of the carbon emissions
intensity of grid-consumed power for the five regions of the National Electricity Market (NEM)
updated at five-minute intervals with the most up-to-date information available. Estimates are
calculated using an energy balance model combined with publicly available generator SCADA
data, interstate power flows/losses and state-level regional demand data sourced from the market
operator. Generator carbon emissions intensity factors include Scope 1 and Scope 3 emissions.

Multiple Stream Requests

The following structure shows a single data point for the nsw and q1d streams for illustration
purposes, but it is worth noting that all data is JSON encoded with the following structure:

{
" links":{
"self":{
"href":"https://senaps.io/api/sensor/v2/observations?1imit=99999999¢&sta
rt=2023-05-01T00:00:00.000Z2&end=2023-05~-
10T00:00:00.000Z&streamid=csiro.energy.dch.agshop.regional global emissions.n
sw,csiro.energy.dch.agshop.regional global emissions.gld"
}
}y
" embedded": {
"stream": [

{

https://agdatashop.csiro.au/
https://doi.org/10.1186/s42162-022-00216-5
https://agdatashop.csiro.au/
https://agdatashop.csiro.au/

" links":{
"self":{
"href":"https://senaps.io/api/sensor/v2/streams/csiro.energy.dch.
agshop.regional global emissions.nsw",
"id":"csiro.energy.dch.agshop.regional global emissions.nsw"
}
}
b

" links":{
"self":{

"href":"https://senaps.io/api/sensor/v2/streams/csiro.energy.dch.agshop.regio
nal global emissions.gld",
"id":"csiro.energy.dch.agshop.regional global emissions.gld"

}

]
b
"streamCount":2,
"results": [

{
"2023-05-01T00:00:00.0002" : {
"csiro.energy.dch.agshop.regional global emissions.nsw":{
"v":728.2350489926174

}y
"csiro.energy.dch.agshop.regional global emissions.gld":({
"v":545.8727223676001
}
}
}y

1,
"count":2593

e The actual data for consumption appears in the "results" collection.

e The "streamCount" and "count" metadata fields refer to the number of
columns and rows (resp.) in the response data.

o All timestamp data is provided as RFC339, UTC formatted string data with the value of
each timestamp defining the key for the data object.

e The value of the data object is another collection of key-value pairs, with the key
denoting the stream id under consideration and the value consisting of another key-value
pair.

o The innermost key-value pair has the special key "v" which denotes the actual (floating
point) value of the data point.

e Valid stream id values for this dataset are:

0 csiro.energy.dch.agshop.regional global emissions.nsw
0 csiro.energy.dch.agshop.regional global emissions.gld
0 csiro.energy.dch.agshop.regional global emissions.sa

0 csiro.energy.dch.agshop.regional global emissions.vic
0 csiro.energy.dch.agshop.regional global emissions.tas

e Units of emissions data in this data is gCO2/kWh.
Single Stream Requests

The following structure shows a single data point for the nsw stream for illustration purposes,
but it is worth noting that all data is JSON encoded with the following structure:

" links":{
"self":{
"href":"https://senaps.io/api/sensor/v2/observations"
}
b
" embedded": {
"stream":{
" links":{
"self":{
"href":"https://senaps.io/api/sensor/v2/streams/csiro.energy.dch.ag
shop.regional global emissions.nsw",
"id":"csiro.energy.dch.agshop.regional global emissions.nsw"

}

}
s

"results": [

{
"t": "2023-05-01T00:00:00.000Z",

ny " :{
"v":728.2350489926174
s

1,
"count":2593,
"streamCount": 1

e The actual data for consumption appears in the "results" collection.

e The "streamCount" and "count" metadata fields refer to the number of
columns and rows (resp.) in the response data.

o All timestamp data is provided as RFC339, UTC formatted string data with the value of
each timestamp corresponding to the "t" key.

o The value of the data object is given by the nested "v" field, and the stream id value no
longer appears in the "results" field.

e Valid stream id values for this dataset are:

O csiro.energy.dch.agshop.regional global emissions.nsw
0 csiro.energy.dch.agshop.regional global emissions.gld
0 csiro.energy.dch.agshop.regional global emissions.sa

0 csiro.energy.dch.agshop.regional global emissions.vic
0 csiro.energy.dch.agshop.regional global emissions.tas

e Units of emissions data in this data is gCO2/kWh.

Sample Use (python)
Upon purchasing access to the data, you will be provided with access credentials.
Accessing Your Credentials

After obtaining access to data through the Data Shop, you will receive your access credentials,
which are crucial for accessing the data. To find these credentials, follow the steps below:

1. Sign into your Data Shop account.
2. Navigate to the My Account tab.
3. Click on the Orders tab.

4. Under Recurring payments, select View order (make sure to note your Order number -
XXXX).

5. On the Order information page, check for the Note(s) tab. Here, you will find your
client_id and client_secret.

client id: <UUID>
client secret: <string>

Your newly acquired CSIRO Data Shop credentials will permit you access to the data itself
which is in the Senaps cloud platform. The following sample code shows how to use the
credentials to make a GET request to the data, as well as parse the data and write the (parsed)
response to disk in parquet format for use downstream.

Further details on how to authenticate with Senaps using your credentials can be found in the
"Authentication for CSIRO Data Shop Products APIs" section below.

Example Code

The following example can be used to make a request using the above credentials with some
time boundaries, with the response data written straight to disk.

Whilst this example has been constructed in python, any language can be employed by following
a similar pattern. It is also worth noting that the polars library used is actually a rust library, so
the above workflow can be reconstructed in a straightforward manner in rust or any of the
wrappers that are provided, including python, NodelS, and R.

Note the section "Authentication for CSIRO Data Shop Products APIs" below also provides
alternate examples of authentication for accessing CSIRO Data Shop products.

Prerequisites

Ensure you have Python 3.10 or higher installed on your system to avoid errors related to
language features such as the match functionality.

Install necessary Python packages (polars and requests_oauth2client) if they are not
already installed:

pip install polars requests oauthZclient

Steps to Use the Code

1.

Set Up Authentication:
Replace <YOUR CLIENT ID> and <YOUR CLIENT SECRET> in the following
code with your credentials (see Accessing Your Credentials).

Configure Parameters:

Adjust the regions, start, end, and write_path parameters in the code to match your data
retrieval needs:

- regions: List of region codes for which you want emissions data (e.g., [""nsw", "qld" ,
"sa"’"tas"’ﬂvic"])-

- start: Start date and time for the data retrieval in ISO 8601 format (e.g., "2023-05-
01T00:00:00.000Z").

- end: Enddate and time for the data retrieval in ISO 8601 format (e.g., '"2023-05-
10T00:00:00.000Z").

- write_path: Path to save the output data in Parquet format (e.g.,
Path("C:\demo_response.parquet")).

Run the Code.

import json

import polars as pl

import requests

import tempfile

from pathlib import Path

from requests ocauth2client import OAuth2Client, OAuth2ClientCredentialsAuth
from typing import List

CLIENT ID = r"<YOUR CLIENT SECRET>"

CLIENT SECRET = r"<YOUR CLIENT SECRET>"

class MyEmissionsData (requests.Session) :

_auth url = "https://login.microsoftonline.com/a815c246-a01f-4d10-bc3e-
eeb6ad8efd4B8a/ocauth2/v2.0/token"
_senaps_url = "https://senaps.eratos.com/api/sensor/v2/observations"
def init (
self,

client_id: str = CLIENT_ID,
client secret: str = CLIENT_ SECRET,
-> None:
super (). init ()
ocoauth2client = OAuth2Client (
self. auth url,
(client id, client secret),

https://www.pola.rs/
https://pypi.org/project/requests-oauth2client/

)

self.auth = OAuth2ClientCredentialsAuth (
oauth2client,
scope=f"{client id}/.default",

)

self.headers = {
"accept": "*x/*",
"content-type": "application/json",

}
def download and parse data(
self,

*
4

write path: Path,
regions: List[str],
start: str,

end: str,

limit: int = 99 999 999,

) —> None:
match len(regions):
case 0O:
raise ValueError (" regions' list cannot be empty")
case 1:
parser = self. parse single stream
case
parser = self. parse multiple streams
streamid = ",".join(

(
f"csiro.energy.dch.agshop.regional global emissions.{region}"
for region in regions

)

)
we stream the response directly to disk to go easy on memory
with tempfile.TemporaryDirectory () as tmpdir:
fname = Path (tmpdir) / "response.json"
with self.get(
url=self. senaps url,
params=dict (
streamid=streamid,
start=start,
end=end,
limit=1limit,

)y

) as response:
response.raise for status()
with open (fname, "wb") as fp:

for chunk in response.iter content (chunk size=1024):
fp.write (chunk)

parse the JSON to parquet data

write path.parent.mkdir (parents=True, exist ok=True)

with open(fname, "r") as fp:
data = json.load (fp)
parser (data, write path)

@staticmethod
def parse single stream(data, write path) -> None:
col name = (

data.get (" embedded")

.get ("stream")

.get (" links")
.get ("self")
.get ("id")

pl.LazyFrame (
[
{
"timestamp": elem.get ("t"),
col name: elem.get ("v").get("v"),
}
for elem in data.get ("results")
]
)
.with columns (
pl.col ("timestamp")
.str.strptime (
dtype=pl.Datetime,
format="%Y-%5m-%dT%$H:%M:%S%.fz2",
strict=True,
exact=True,
)
.cast (
pl.Datetime (
time unit="ms",
time zone="UTC",

)
)
.sort (by="timestamp")
.sink parquet (write path)
)
@staticmethod
def parse multiple streams(data, write path) -> None:
(
pl.LazyFrame (
[
{
"timestamp": key,
"struct": {
obs key: obs val.get ("v")
for obs key, obs val in values.items()
I
}
for elem in data.get ("results")
for key, values in elem.items ()
1
)

.unnest ("struct")
.with columns (
pl.col ("timestamp")
.str.strptime (
dtype=pl.Datetime,
format="%Y-%$m-%dT%$H:%M:%S%.£fz2",
strict=True,
exact=True,

.cast (
pl.Datetime (
time unit="ms",
time zone="UTC",

)
)
.sort (by="timestamp")
.sink parquet (write path)
)
if name == " main ":
e = MyEmissionsData ()
e.download and parse data (
regions=["nsw", "gld"],
start="2023-05-01T00:00:00.0002",
end="2023-05-10T00:00:00.0002z",
write path=Path("./demo response.parquet"),

Authentication for CSIRO Data Shop
Products APIs

Introduction

This documentation is provided as a reference where the use of an open source OAuth2 client
library for authentication is not available.

DataShop products accessible via API require a Json Web Token (JWT) as a bearer access token
to authenticate every API request. You need to get a bearer token and then use it in

the Authorization header of each API request to use the API to access the product data
successfully. It is used by the API endpoint to confirm you have access to the product before
providing product data. Most programming languages will have libraries with support for
OAuth2 which can automate this process, but it is explained in detail on this page for reference
and to help debug and test product API calls using interactive API-docs.

Retrieving an access token

To obtain an access token, a request needs to be made to the CSIRO identity provider’s token
endpoint following the Client Credentials flow, which is part of the commonly used OAuth 2.0
specification. The client credentials flow accepts your client id and client secret and provides
you an Access Token. Your client id and client secret can be found in the order details page
after purchasing a product. You can find your order history page via your account on the shop
website or the 'order details' link provided in the order confirmation email.

Access Token Request

https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6749#section-4.4
https://agdatashop.csiro.au/order/history

POST https://login.microsoftonline.com/a815c246-a01f-4d10-bc3e-
eebbad8efd4B8a/ocauth2/v2.0/token

Parameters:
Name In Type |Required |Description
f;;rr)léent- Header |String | Yes Set to "application/x-www-form-urlencoded"
grant type |Body |String |Yes Set to "client credentials"
Set to the client id that you have been
client id Body |String | Yes supplied. (Can also be retrieved from the
CSIRO Data Shop order history)
Set to the client secret that you have been
client secret |Body |String | Yes supplied. (Can also be retrieved from the
CSIRO Data Shop order history)
Must be set to the client_id + "/.default"
. For example:
scope Body |String | Yes

12345678-1234-1234-1234-
1234567890AB/.default

Note: the client_id value needs to be inserted in two different places!

Sample request:

POST https://login.microsoftonline.com/a815c246-a01f-4d10-bc3e-
eeb6ad8efi4B8a/ocauth2/v2.0/token
application/x-www-form-urlencoded

Content-Type:

grant type=client credentials
&client id=12345678-1234-1234-1234-1234567890AB
&client secret=ClientSecr3t#
&scope=12345678-1234-1234-1234-1234567890AB/ .default

Access Token Responses

Access Token Response Status Codes

Status | Meaning Description
The request was valid and an access token has been returned:
{
"token type": "Bearer",
200 OK "expires in": 3599,
"ext expires in": 3599,
"access token": "eyJ0eXAiOiJKV1QiLCJub2.."
}
400 Bad Request | The request was invalid, such as a missing parameter.
401 Unauthorized | Invalid client credentials were supplied in the request.

Access Token Response Properties

A successful response (200 OK) will return the access_token as well as additional details that
describe the token usage.

Property Description

Outlines that the token is a bearer token (i.e. give access to the bearer of
token type this token) and should be passed to the API through the Authorization
header using the Bearer scheme.

The amount of seconds until the access_token expires.

Note:
expires_in
Once the access_token has expired it can no longer be used to call the
API. When this occurs a new access_token must be requested from the
identity provider.

This indicates the extended lifetime of the token. How long the access

ext_expires_in : L) . .
—CXPIES_IN T oken is valid (in seconds) if the server isn't responding.

The value of the access_token. This is the value to be passed to the API in

access_token o .
- the Authorization header using the Bearer scheme.

Sample response:

200 OK

"token type": "Bearer",

"expires in": 3599,

"ext expires in": 3599,

"access token": "eyJO0eXAi0iJKV1QiLCJhbGciOiJ...NOiYYESIO0ABO A"

Using the Access Token
When a 200 OK status is returned from the token endpoint, the access token value from

the response body can be extracted. This value is then set as the bearer token when calling the
relevant CSIRO Data Shop Product API:

GET /product api call/
Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJ...NOiYYE910ABO A

Examples

Postman Collection

This Postman Collection provides a pre-configured 'get token' request where only the the
client id, client secret and scope parameters are required to test the request.

"info": {
" postman_ id": "564e9091-75a9-4£f97-a3ec-44c72486e405",
"name": "AgData Shop Authentication",
"schema":

"https://schema.getpostman.com/json/collection/v2.1.0/collection.json"

y

"item": [{
"name": "Get Token",
"event": [{
"listen": "prerequest",
"script": {
"exec": [uu],
"type": "text/javascript"
}
Py
"request": {
"method": "POST",
"header": [],
"body": {
"mode": "formdata",
"formdata": [{

"key": "client id",

"value": "<ENTER CLIENT ID>",

"description": "Set to the client id that you have been
supplied. (Can also be retrieved from the AgData shop order history)",
"type": "text"
boo A
"key": "client secret",
"value": "<ENTER CLIENT SECRET>",
"description": "Set to the client secret that you have been
supplied. (Can also be retrieved from the AgData shop order history)",
"type": "text"
b A
"key": "scope",
"value": "<ENTER CLIENT ID>/.default",
"description”: "Must be set to the client id + \"./default\"
\n\nFor example: \n\nl2345678-1234-1234-1234-1234567890AB/.default ",
"type": "text"
boo A
"key": "grant type",
"value": "client credentials",
"description": "Must be 'client credentials'",
"type": "text"
}]
}y
"url": |

"raw": "https://login.microsoftonline.com/a815c246-a01f-4d10-bc3e-
eebbad8efd8a/o0auth2/v2.0/token ",

"protocol": "https",
"host": ["login", "microsoftonline", "com"],
"path": ["a815c246-a01f-4d10-bc3e-eeb6ad8ef48a", "oauth2", "v2.0",
"token "]
}
b
"response": []
H
}
cURL example
curl --request POST 'https://login.microsoftonline.com/a815c246-a01f-4d10-
bc3e-eebbad8ef48a/o0auth2/v2.0/token' --form 'client id="<ENTER CLIENT ID
HERE>"' --form 'client secret="<ENTER CLIENT SECRET HERE>"' --form
'scope="<ENTER CLIENT ID HERE>/.default"' --form

'grant type="client credentials"'

Python example (includes call to Senaps using the acquired token)

Many of the CSIRO Data Shop products provide Python examples using the popular requests
library. The follow code snippet demonstrates how to use the requests-oauth2client library to
perform CSIRO Data Shop API requests.

The requests-oauth2client library can be installed using pip as follows:

pip install requests-oauth2client

Get Token example:

from requests ocauth2client import *

import requests

CLIENT ID = '<ENTER CLIENT ID HERE>'

CLIENT SECRET = '<ENTER CLIENT SECRET HERE>'

oauth2client = OAuth2Client ('https://login.microsoftonline.com/a815c246-a0l1f-
4d10-bc3e-eebbad8efd4B8a/oauth2/v2.0/token', (CLIENT ID, CLIENT SECRET))
session = requests.Session|()

session.auth = OAuth2ClientCredentialsAuth (cauth2client,

scope=f'{CLIENT ID}/.default')

The session object can be used to make AgData Shop product API calls.
#response = session.get ('<product api request>"')

#fe.g. if the product is Eratos Senaps based:

response = session.get ('https://senaps.eratos.com/api/sensor/v2/")

print (f"Successful connection to Eratos Senaps for user
{response.json() [' embedded'] ['user'][0]['id"']}")

#This won't be needed in your code - it displays the token for API Docs use.
token =

session.auth.client.client credentials(**session.auth.token kwargs) .access_to
ken

print (f"Token:\n{token}")

