
Emissions Product Documentation and API 

Guide 

Summary 

This document describes how to access data available in the Emissions data product available 

through the CSIRO Data Shop. For details about the methodology used to generate the data 

please refer to Aryai, V., Goldsworthy, M. "Controlling electricity storage to balance electricity 

costs and greenhouse gas emissions in buildings", Energy Inform 5, 11 (2022). 

https://doi.org/10.1186/s42162-022-00216-5. 

Prerequisites 

• Authorization and license agreement. You can access a subscription through our CSIRO 

Data Shop.   More details on Authorisation processes/mechanisms are in the section 

"Authentication for CSIRO Data Shop Products APIs" below. 

• Some programming experience to consume REST API data services. An example is 

provided using the python programming language, but python is not required at all. 

Data Structure and Variables 

The Emissions data is organized as a collection of time series estimates of the carbon emissions 

intensity of grid-consumed power for the five regions of the National Electricity Market (NEM) 

updated at five-minute intervals with the most up-to-date information available. Estimates are 

calculated using an energy balance model combined with publicly available generator SCADA 

data, interstate power flows/losses and state-level regional demand data sourced from the market 

operator. Generator carbon emissions intensity factors include Scope 1 and Scope 3 emissions. 

Multiple Stream Requests 

The following structure shows a single data point for the nsw  and qld  streams for illustration 

purposes, but it is worth noting that all data is JSON encoded with the following structure: 

{ 

  "_links":{ 

    "self":{ 

      "href":"https://senaps.io/api/sensor/v2/observations?limit=99999999&sta

rt=2023-05-01T00:00:00.000Z&end=2023-05-

10T00:00:00.000Z&streamid=csiro.energy.dch.agshop.regional_global_emissions.n

sw,csiro.energy.dch.agshop.regional_global_emissions.qld" 

    } 

  }, 

  "_embedded":{ 

    "stream":[ 

      { 

https://agdatashop.csiro.au/
https://doi.org/10.1186/s42162-022-00216-5
https://agdatashop.csiro.au/
https://agdatashop.csiro.au/


        "_links":{ 

          "self":{ 

            "href":"https://senaps.io/api/sensor/v2/streams/csiro.energy.dch.

agshop.regional_global_emissions.nsw", 

            "id":"csiro.energy.dch.agshop.regional_global_emissions.nsw" 

          } 

        } 

      }, 

      { 

        "_links":{ 

          "self":{ 

            

"href":"https://senaps.io/api/sensor/v2/streams/csiro.energy.dch.agshop.regio

nal_global_emissions.qld", 

            "id":"csiro.energy.dch.agshop.regional_global_emissions.qld" 

          } 

        } 

      } 

    ] 

  }, 

  "streamCount":2, 

  "results":[ 

    { 

      "2023-05-01T00:00:00.000Z":{ 

        "csiro.energy.dch.agshop.regional_global_emissions.nsw":{ 

          "v":728.2350489926174 

        }, 

        "csiro.energy.dch.agshop.regional_global_emissions.qld":{ 

          "v":545.8727223676001 

        } 

      } 

    }, 

    ... 

  ], 

  "count":2593 

} 

 

• The actual data for consumption appears in the "results" collection. 

• The "streamCount" and "count" metadata fields refer to the number of 
columns and rows (resp.) in the response data. 

• All timestamp data is provided as RFC339, UTC formatted string data with the value of 

each timestamp defining the key for the data object. 

• The value of the data object is another collection of key-value pairs, with the key 

denoting the stream id under consideration and the value consisting of another key-value 

pair. 

• The innermost key-value pair has the special key "v" which denotes the actual (floating 

point) value of the data point. 

• Valid stream_id  values for this dataset are:  

o csiro.energy.dch.agshop.regional_global_emissions.nsw  
o csiro.energy.dch.agshop.regional_global_emissions.qld 
o csiro.energy.dch.agshop.regional_global_emissions.sa 



o csiro.energy.dch.agshop.regional_global_emissions.vic 
o csiro.energy.dch.agshop.regional_global_emissions.tas 

• Units of emissions data in this data is gCO2/kWh. 

Single Stream Requests 

The following structure shows a single data point for the nsw  stream for illustration purposes, 

but it is worth noting that all data is JSON encoded with the following structure: 

{ 

  "_links":{ 

    "self":{ 

      "href":"https://senaps.io/api/sensor/v2/observations" 

    } 

  }, 

  "_embedded":{ 

    "stream":{ 

      "_links":{ 

        "self":{ 

          "href":"https://senaps.io/api/sensor/v2/streams/csiro.energy.dch.ag

shop.regional_global_emissions.nsw", 

          "id":"csiro.energy.dch.agshop.regional_global_emissions.nsw" 

        } 

      } 

    } 

  }, 

  "results":[ 

    { 

      "t": "2023-05-01T00:00:00.000Z", 

      "v":{ 

          "v":728.2350489926174 

      }, 

    ... 

  ], 

  "count":2593, 

  "streamCount": 1 

} 

• The actual data for consumption appears in the "results" collection. 

• The "streamCount" and "count" metadata fields refer to the number of 
columns and rows (resp.) in the response data. 

• All timestamp data is provided as RFC339, UTC formatted string data with the value of 

each timestamp corresponding to the "t" key. 

• The value of the data object is given by the nested "v" field, and the stream_id value no 

longer appears in the "results" field. 

• Valid stream_id  values for this dataset are:  

o csiro.energy.dch.agshop.regional_global_emissions.nsw  
o csiro.energy.dch.agshop.regional_global_emissions.qld 
o csiro.energy.dch.agshop.regional_global_emissions.sa 
o csiro.energy.dch.agshop.regional_global_emissions.vic 
o csiro.energy.dch.agshop.regional_global_emissions.tas 

• Units of emissions data in this data is gCO2/kWh. 



Sample Use (python) 

Upon purchasing access to the data, you will be provided with access credentials. 

Accessing Your Credentials 

After obtaining access to data through the Data Shop, you will receive your access credentials, 

which are crucial for accessing the data. To find these credentials, follow the steps below: 

1. Sign into your Data Shop account. 

2. Navigate to the My Account tab. 

3. Click on the Orders tab. 

4. Under Recurring payments, select View order (make sure to note your Order number - 

XXXX). 

5. On the Order information page, check for the Note(s) tab. Here, you will find your 

client_id and client_secret. 

client_id: <UUID> 

client_secret: <string> 

Your newly acquired CSIRO Data Shop credentials will permit you access to the data itself 

which is in the Senaps cloud platform. The following sample code shows how to use the 

credentials to make a GET request to the data, as well as parse the data and write the (parsed) 

response to disk in parquet format for use downstream. 

Further details on how to authenticate with Senaps using your credentials can be found in the 

"Authentication for CSIRO Data Shop Products APIs" section below. 

Example Code 

The following example can be used to make a request using the above credentials with some 

time boundaries, with the response data written straight to disk.   

Whilst this example has been constructed in python, any language can be employed by following 

a similar pattern.  It is also worth noting that the polars library used is actually a rust library, so 

the above workflow can be reconstructed in a straightforward manner in rust or any of the 

wrappers that are provided, including python, NodeJS, and R. 

Note the section "Authentication for CSIRO Data Shop Products APIs" below also provides 

alternate examples of authentication for accessing CSIRO Data Shop products.  

Prerequisites 



• Ensure you have Python 3.10 or higher installed on your system to avoid errors related to 

language features such as the match functionality. 

• Install necessary Python packages (polars and requests_oauth2client) if they are not 

already installed: 

pip install polars requests_oauth2client 

Steps to Use the Code 

1. Set Up Authentication: 

Replace <YOUR CLIENT ID> and <YOUR CLIENT SECRET>  in the following 

code with your credentials (see Accessing Your Credentials). 

2. Configure Parameters: 

Adjust the regions, start, end, and write_path parameters in the code to match your data 

retrieval needs: 

- regions: List of region codes for which you want emissions data (e.g., ["nsw", "qld" , 

"sa","tas","vic"]). 

- start: Start date and time for the data retrieval in ISO 8601 format (e.g., "2023-05-

01T00:00:00.000Z"). 

- end: Enddate and time for the data retrieval in ISO 8601 format (e.g., "2023-05-

10T00:00:00.000Z"). 

- write_path: Path to save the output data in Parquet format (e.g., 

Path("C:\demo_response.parquet")). 

3. Run the Code. 

 

import json 

import polars as pl 

import requests 

import tempfile 

from pathlib import Path 

from requests_oauth2client import OAuth2Client, OAuth2ClientCredentialsAuth 

from typing import List 

CLIENT_ID = r"<YOUR CLIENT SECRET>" 

CLIENT_SECRET = r"<YOUR CLIENT SECRET>" 

class MyEmissionsData(requests.Session): 

    _auth_url = "https://login.microsoftonline.com/a815c246-a01f-4d10-bc3e-

eeb6a48ef48a/oauth2/v2.0/token" 

    _senaps_url = "https://senaps.eratos.com/api/sensor/v2/observations" 

    def __init__( 

        self, 

        client_id: str = CLIENT_ID, 

        client_secret: str = CLIENT_SECRET, 

    ) -> None: 

        super().__init__() 

        oauth2client = OAuth2Client( 

            self._auth_url, 

            (client_id, client_secret), 

https://www.pola.rs/
https://pypi.org/project/requests-oauth2client/


        ) 

        self.auth = OAuth2ClientCredentialsAuth( 

            oauth2client, 

            scope=f"{client_id}/.default", 

        ) 

        self.headers = { 

            "accept": "*/*", 

            "content-type": "application/json", 

        } 

    def download_and_parse_data( 

        self, 

        *, 

        write_path: Path, 

        regions: List[str], 

        start: str, 

        end: str, 

        limit: int = 99_999_999, 

    ) -> None: 

        match len(regions): 

            case 0: 

                raise ValueError("`regions` list cannot be empty") 

            case 1: 

                parser = self._parse_single_stream 

            case _: 

                parser = self._parse_multiple_streams 

        streamid = ",".join( 

            ( 

                f"csiro.energy.dch.agshop.regional_global_emissions.{region}" 

                for region in regions 

            ) 

        ) 

        # we stream the response directly to disk to go easy on memory 

        with tempfile.TemporaryDirectory() as tmpdir: 

            fname = Path(tmpdir) / "response.json" 

            with self.get( 

                url=self._senaps_url, 

                params=dict( 

                    streamid=streamid, 

                    start=start, 

                    end=end, 

                    limit=limit, 

                ), 

            ) as response: 

                response.raise_for_status() 

                with open(fname, "wb") as fp: 

                    for chunk in response.iter_content(chunk_size=1024): 

                        fp.write(chunk) 

            # parse the JSON to parquet data 

            write_path.parent.mkdir(parents=True, exist_ok=True) 

            with open(fname, "r") as fp: 

                data = json.load(fp) 

                parser(data, write_path) 

    @staticmethod 

    def _parse_single_stream(data, write_path) -> None: 

        col_name = ( 

            data.get("_embedded") 

            .get("stream") 



            .get("_links") 

            .get("self") 

            .get("id") 

        ) 

        ( 

            pl.LazyFrame( 

                [ 

                    { 

                        "timestamp": elem.get("t"), 

                        col_name: elem.get("v").get("v"), 

                    } 

                    for elem in data.get("results") 

                ] 

            ) 

            .with_columns( 

                pl.col("timestamp") 

                .str.strptime( 

                    dtype=pl.Datetime, 

                    format="%Y-%m-%dT%H:%M:%S%.fZ", 

                    strict=True, 

                    exact=True, 

                ) 

                .cast( 

                    pl.Datetime( 

                        time_unit="ms", 

                        time_zone="UTC", 

                    ) 

                ) 

            ) 

            .sort(by="timestamp") 

            .sink_parquet(write_path) 

        ) 

    @staticmethod 

    def _parse_multiple_streams(data, write_path) -> None: 

        ( 

            pl.LazyFrame( 

                [ 

                    { 

                        "timestamp": key, 

                        "struct": { 

                            obs_key: obs_val.get("v") 

                            for obs_key, obs_val in values.items() 

                        }, 

                    } 

                    for elem in data.get("results") 

                    for key, values in elem.items() 

                ] 

            ) 

            .unnest("struct") 

            .with_columns( 

                pl.col("timestamp") 

                .str.strptime( 

                    dtype=pl.Datetime, 

                    format="%Y-%m-%dT%H:%M:%S%.fZ", 

                    strict=True, 

                    exact=True, 

                ) 



                .cast( 

                    pl.Datetime( 

                        time_unit="ms", 

                        time_zone="UTC", 

                    ) 

                ) 

            ) 

            .sort(by="timestamp") 

            .sink_parquet(write_path) 

        ) 

if __name__ == "__main__": 

    e = MyEmissionsData() 

    e.download_and_parse_data( 

        regions=["nsw", "qld"], 

        start="2023-05-01T00:00:00.000Z", 

        end="2023-05-10T00:00:00.000Z", 

        write_path=Path("./demo_response.parquet"), 

    ) 

Authentication for CSIRO Data Shop 

Products APIs 

Introduction  

This documentation is provided as a reference where the use of an open source OAuth2 client 

library for authentication is not available. 

DataShop products accessible via API require a Json Web Token (JWT) as a bearer access token 

to authenticate every API request.  You need to get a bearer token and then use it in 

the Authorization header of each API request to use the API to access the product data 

successfully.  It is used by the API endpoint to confirm you have access to the product before 

providing product data. Most programming languages will have libraries with support for 

OAuth2 which can automate this process, but it is explained in detail on this page for reference 

and to help debug and test product API calls using interactive API-docs. 

Retrieving an access token  

To obtain an access token, a request needs to be made to the CSIRO identity provider’s token 

endpoint following the Client Credentials flow, which is part of the commonly used OAuth 2.0 

specification.  The client credentials flow accepts your client_id and client_secret and provides 

you an Access Token. Your client_id and client_secret can be found in the order details page 

after purchasing a product. You can find your order history page via your account on the shop 

website or the 'order details' link provided in the order confirmation email.  

Access Token Request  

https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6749#section-4.4
https://agdatashop.csiro.au/order/history


POST https://login.microsoftonline.com/a815c246-a01f-4d10-bc3e-

eeb6a48ef48a/oauth2/v2.0/token  

Parameters:  

Name  In  Type  Required  Description  

Content-

Type  
Header  String  Yes  Set to "application/x-www-form-urlencoded"  

grant_type  Body  String  Yes  Set to "client_credentials"  

client_id  Body  String  Yes  

Set to the client_id that you have been 

supplied. (Can also be retrieved from the 

CSIRO Data Shop order history) 

client_secret  Body  String  Yes  

Set to the client_secret that you have been 

supplied. (Can also be retrieved from the 

CSIRO Data Shop order history) 

scope  Body  String  Yes  

Must be set to the client_id + "/.default"  

For example:  

12345678-1234-1234-1234-

1234567890AB/.default  

Note: the client_id value needs to be inserted in two different places! 

Sample request:  

POST https://login.microsoftonline.com/a815c246-a01f-4d10-bc3e-

eeb6a48ef48a/oauth2/v2.0/token  

Content-Type: application/x-www-form-urlencoded  

 

grant_type=client_credentials 

&client_id=12345678-1234-1234-1234-1234567890AB  

&client_secret=C1ient$ecr3t#  

&scope=12345678-1234-1234-1234-1234567890AB/.default  



Access Token Responses  

Access Token Response Status Codes 

Status  Meaning  Description  

200  OK  

The request was valid and an access token has been returned: 

 {  

    "token_type": "Bearer",  

    "expires_in": 3599,  

    "ext_expires_in": 3599,  

    "access_token": "eyJ0eXAiOiJKV1QiLCJub2…"  

}  

400  Bad Request  The request was invalid, such as a missing parameter.  

401  Unauthorized  Invalid client credentials were supplied in the request.  

Access Token Response Properties 

A successful response (200 OK) will return the access_token as well as additional details that 

describe the token usage. 

Property Description 

token_type 

Outlines that the token is a bearer token (i.e. give access to the bearer of 

this token) and should be passed to the API through the Authorization 

header using the Bearer scheme. 

expires_in 

The amount of seconds until the access_token expires. 

Note: 

Once the access_token has expired it can no longer be used to call the 

API.  When this occurs a new access_token must be requested from the 

identity provider. 

ext_expires_in 
This indicates the extended lifetime of the token.  How long the access 

token is valid (in seconds) if the server isn't responding. 

access_token 
The value of the access_token.  This is the value to be passed to the API in 

the Authorization header using the Bearer scheme. 



Sample response:  

200 OK  

 

{  

    "token_type": "Bearer",  

    "expires_in": 3599,  

    "ext_expires_in": 3599,  

    "access_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJ...NOiYYE910ABO_A"  
}  

Using the Access Token 

When a 200 OK status is returned from the token endpoint, the access_token value from 

the response body can be extracted.   This value is then set as the bearer token when calling the 

relevant CSIRO Data Shop Product API:  

GET /product_api_call/  

Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJ...NOiYYE910ABO_A  

Examples 

Postman Collection 

This Postman Collection provides a pre-configured 'get token' request where only the the 

client_id, client_secret and scope parameters are required to test the request. 

  
{ 

  "info": { 

    "_postman_id": "564e9091-75a9-4f97-a3ec-44c72486e405", 

    "name": "AgData Shop Authentication", 

    "schema": 

"https://schema.getpostman.com/json/collection/v2.1.0/collection.json" 

  }, 

  "item": [{ 

      "name": "Get Token", 

      "event": [{ 

          "listen": "prerequest", 

          "script": { 

            "exec": [""], 

            "type": "text/javascript" 

          } 

        }], 

      "request": { 

        "method": "POST", 

        "header": [], 

        "body": { 

          "mode": "formdata", 

          "formdata": [{ 

              "key": "client_id", 



              "value": "<ENTER CLIENT ID>", 

              "description": "Set to the client_id that you have been 

supplied. (Can also be retrieved from the AgData shop order history)", 

              "type": "text" 

            }, { 

              "key": "client_secret", 

              "value": "<ENTER CLIENT SECRET>", 

              "description": "Set to the client_secret that you have been 

supplied. (Can also be retrieved from the AgData shop order history)", 

              "type": "text" 

            }, { 

              "key": "scope", 

              "value": "<ENTER CLIENT ID>/.default", 

              "description": "Must be set to the client_id + \"./default\" 

\n\nFor example: \n\n12345678-1234-1234-1234-1234567890AB/.default ", 

              "type": "text" 

            }, { 

              "key": "grant_type", 

              "value": "client_credentials", 

              "description": "Must be 'client_credentials'", 

              "type": "text" 

            }] 

        }, 

        "url": { 

          "raw": "https://login.microsoftonline.com/a815c246-a01f-4d10-bc3e-

eeb6a48ef48a/oauth2/v2.0/token ", 

          "protocol": "https", 

          "host": ["login", "microsoftonline", "com"], 

          "path": ["a815c246-a01f-4d10-bc3e-eeb6a48ef48a", "oauth2", "v2.0", 

"token "] 

        } 

      }, 

      "response": [] 

    }] 

} 

 

 

cURL example 

curl --request POST 'https://login.microsoftonline.com/a815c246-a01f-4d10-

bc3e-eeb6a48ef48a/oauth2/v2.0/token'  --form 'client_id="<ENTER CLIENT ID 

HERE>"' --form 'client_secret="<ENTER CLIENT SECRET HERE>"' --form 

'scope="<ENTER CLIENT ID HERE>/.default"' --form 

'grant_type="client_credentials"' 

Python example (includes call to Senaps using the acquired token) 

Many of the CSIRO Data Shop products provide Python examples using the popular requests 

library. The follow code snippet demonstrates how to use the requests-oauth2client library to 

perform CSIRO Data Shop API requests. 



The requests-oauth2client library can be installed using pip as follows: 

pip install requests-oauth2client 

Get Token example: 

from requests_oauth2client import * 

import requests 

CLIENT_ID = '<ENTER CLIENT ID HERE>' 

CLIENT_SECRET = '<ENTER CLIENT SECRET HERE>' 

oauth2client = OAuth2Client('https://login.microsoftonline.com/a815c246-a01f-

4d10-bc3e-eeb6a48ef48a/oauth2/v2.0/token', (CLIENT_ID, CLIENT_SECRET)) 

session = requests.Session() 

session.auth = OAuth2ClientCredentialsAuth(oauth2client, 

scope=f'{CLIENT_ID}/.default') 

# The session object can be used to make AgData Shop product API calls. 

#response = session.get('<product api request>') 

#e.g. if the product is Eratos Senaps based: 

response = session.get('https://senaps.eratos.com/api/sensor/v2/') 

print(f"Successful connection to Eratos Senaps for user 

{response.json()['_embedded']['user'][0]['id']}") 

#This won't be needed in your code - it displays the token for API Docs use. 

token = 

session.auth.client.client_credentials(**session.auth.token_kwargs).access_to

ken 

print(f"Token:\n{token}") 

 


